Technology Considerations for the Science Classroom

As we plan for the upcoming school year, it’s a good time to reflect and think about goals and the means to implement them in the next few months. Many colleagues have mentioned the desire to incorporate more technology and even go so far as to suggest a “paperless classroom.” It sometimes seems like a race to keep up with the latest advances in technology as they impact learning via animations, simulations, apps, probeware and flipped learning to name a few.  While I too am guilty of falling victim to the allure of any tool that appears to potentially enhance my students’ love of learning science, the replacement of a traditional aspect of a lesson’s design should be performed only if it offers a real and tangible improvement to the lesson. The excessive use of technology simply based on trends should be approached with caution.

Technological Pedagogical Content Knowledge (TPCK) can be the vehicle by which teachers decide if and how a technological application can be incorporated into their classrooms. TPCK more recently coined as TPACK technology, pedagogy and content knowledge incorporates technology into Lee Shulman’s pedagogical content knowledge (PCK) construct (Mishra, P., & Koehler, M.J., 2006). PCK is the means by which a teacher takes his/her content knowledge and transforms it into content knowledge for his/her students. Teachers’ PCK includes an understanding of the misconceptions and preconceptions students bring to each specific topic as well as the strategies to assist them in overcoming these barriers to student understanding  such as demonstrations, animations, simulations, analogies, etc. (Shulman, L., 1987). With technology constantly evolving it is important to utilize applications with students if and when they enhance student learning. When deciding if it is appropriate to utilize a particular technology tool, a TPACK lens requires a teacher to think about how the technology could be used as a pedagogical tool or content representation as well as how student learning of the content is impacted by such a tool when considering the context of how it would be used. In other words: it eliminates the thought process of using technology for the sake of technology but rather requires purposeful lesson design where technology is integrated if and only if it aides in students learning of content considering the population of student needs.

It is challenging to integrate technology while at the same time, consider the pedagogy and the content simultaneously through a TPACK framework. Today, most teachers are trained to incorporate technology via one size fits all professional development sessions which typically provide only an introduction to a tool and focus only on the technology itself and not the best practices for integration the tool into student learning.

There is no debating the fact that students need to be technologically savvy and as educators we are responsible for making our students college and career ready for the 21st century. With a wide range of applications available at our fingertips, educators need to determine which tools are the best aligned with content that will enhance the pedagogy for their students. Students have also culturally adapted to the world of smart phones where they can download an app to practice a particular science skill, sketch and rotate molecules, makes mechanisms, etc. (Williams, A., & Pence, H., 2011). While there are many advantages of using such tools, the traditional paper and pencil method should not necessarily be dismissed. For instance, when polled my students preferred assessments on paper over the computer. Even when providing students with the rationale behind computer assessments such as Graduate Record Exam (GRE) and vocational tests now being administered online, they still did not prefer this method and stated they needed to annotate the questions and wanted to interact directly with the text on paper. Additionally, students in my class preferred Lewis dot diagrams and drawing structural formulas in organic chemistry by hand over their technology counterparts. For programs that had the application or functionality to create molecules, often it was more cumbersome than drawing by hand and more time was spent learning how to use the program than the chemistry content itself. When considering this from a TPACK lens, the technology did not enhance student learning and thus the lesson needs revision.

In summary, when trying to incorporate technology into lessons, teachers should consider the content at hand, the pedagogical method that best suits teaching the content and the technology that would aide or be the mechanism of instruction for a particular group learners. As educators, we continue to strive to improve our instruction. It’s beneficial to reflect and think about why a teacher is using a particular piece of technology and ask if it is serving the function the teacher believes it to be. There are many pedagogical techniques available that do not necessarily require technology such as Modeling instruction™, POGIL®, and improvisation to name a few that for which I have been unable to find a technological counterpart that I feel is equally effective for my teaching environment. While the demands for technological applications for certain pedagogical techniques have been met by means such as  zoom meetings with breakout rooms to teach concepts via a POGIL® activity, I would argue that certain populations of students learn better from the face to face interaction. Thus, there is not one singular approach that works but rather a variety of approaches that can be appropriate depending on what the content goal is for a particular group of students and the context.

 

References:

Glaser. R. (1984). Education and thinking: The role of knowledge.  American Psychology, 39(2), 93-104.

Graham, R. C., Burgoyne, N., Cantrell, P., Smith, L., St Clair, L., &  Harris, R. (2009).

Measuring the TPACK confidence of inservice science teachers.    TechTrends, 53(5), 70-79.

Mishra, P., & Koehler, M. (2007). Technological pedagogical content knowledge (TPCK): Confronting the wicked problems of teaching with technology. In C. Crawford et   al. (Eds.), Proceedings of Society for Information Technology and Teacher Education International Conference 2007 (pp.  2214-2226). Chesapeake, VA: Association for the Advancement of Computing in Education.

Mishra, P., & Koehler, M.J. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teacher knowledge. Teachers College Record, 108(6), 1017-1054.                         

National Research Council. (2000) How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.      

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.

Williams, A. J., & Pence, H. E. (2011). Smart phones, a powerful tool in the chemistry classroom. Journal of Chemical Education, 88(6),  683-686.        

 

Tips on Teaching Astronomy

An image of the 8.21.17 eclipse, taken by the author of this post.

The smartphone operating system will dictate which apps you use. However, many of the apps are similar, so they can be used the same way. Having the students load a sky map of some sort, will allow most of the kids not to get bored if you do an observing session at night with limited telescopes. Better yet, include an app that detects the position of the International Space Station, and plan an observing night that coincides with a flyby of the ISS. Students and parents always marvel at the sight of it as it brightly passes overhead. Passing Iridium satellites can also be predicted and observed.

If I’m teaching astronomy, I always ask the students to load a program onto their laptops, it’s called Stellarium. Stellarium allows students to see their sky at night, for that date and time (or any date and time), and illustrate it many ways. It also shows other cultural constellations, not just western culture. Stellarium can be used for H.W. Assignments, teaching constellations, mythology, teaching star circles, and learning about deep space object classification systems. Another laptop program that’s free and is a great tool for showing our place in the universe is Where is M13? It is a program that maps out our galaxy, and most of the visible celestial objects in deep space that you might discuss. It is also useful for showing the structure of our galaxy.

Now telescopes, if you are considering purchasing equipment the first thing you should buy is a solar telescope. Meade is producing a low-cost solar telescope called the PST. If you are new to solar observing, you can easily see sunspots, prominences, and solar flares with these solar telescopes during the day! For night, skip the refractors, because good ones are a fortune, and cheap ones are good for the moon only. A planet will look like a small dot, and the planet will rotate away before a student has a chance to see. At night, diameter counts, and the cheapest way to get diameter is with reflecting or Newtonian style telescopes. A 10” or 12” reflecting telescope will not break the budget and is not too heavy to move. If you get an equivalent catadioptric, it’s a back breaker and very expensive. Used equipment can be found online, so if your district is willing to but that way, you can save money by shopping on Cloudy Nights.com. Trussed reflectors are a little cheaper than catadioptric but more expensive than Dobsonians (Newtonian version), however, they are easy to set up and are light. OK, you keep hearing me mention catadioptric. I’ll save this one for last, as they are expensive. I just saw new 9.25-inch listing for $3000.00. That is a starting point, they get more expensive. They are also heavy and delicate. The advantage is that most catadioptric are compact in length, are GoTO, and most have a GPS to do self-alignment. Having a big heavy mount is important for these instruments, otherwise they will vibrate and so will your object in the eyepiece will too.

Just a few more tricks, I use Google Earth and a solar system scaling Excel program (Google it) to create a scale model of the solar system if the sun has a 9” diameter. I usually will have the class on the athletic field to build the model. I like using solar system and constellation flash cards during lessons as a quick segue into lessons. Most of my students love Scale of the Universe, and I as a teacher love UNL Astronomy Simulations. Well, that’s it for now, enjoy the rest of the summer and don’t forget the August 21st solar eclipse!

A Couple of New Websites

This is the moment of the year when I can begin to see the light at the end of the tunnel so they say. AP Exams are around the corner and I often forget the stress not only on the students but on myself as well. I am often thinking “Wow, I am not sure I will be ready for this in September again,” but then after recharging over the summer I find myself excited to start all over again.

I do try to use my time after the AP Exam to finish, start, continue with the things that have been placed on the back burner during the rest of the year. I have found two great resources I would like to pass on to the membership:

  1. An online library full of resources for biodiversity produced collectively by the California Academy of Sciences and Khan Academy. This is an online virtual expedition for high school (and adult) learners and covers more than 30 specific tutorials. It ranges from topics like why biodiversity is important, where it is found, specific case studies and how it can be protected. Each of the tutorials includes videos, articles, a glossary, quiz questions, activities, and references to dive deeper into content.
  2. A youtube channel that covers teacher tools. It is a mixed collection of teaching tools and websites that students can learn from. Each week the author, Jamie Keet presents a short (~10 minute) video on his picks of the week. I often play this in background while I am working on something else so that I can pause when something peaks my interest and pick up a new tool. Here’s a recent video from the channel: