Outstanding Students and Teachers to be Recognized at the 44th Annual Awards Dinner in May

Each year the STANYS Suffolk Section presents an Awards Dinner at which outstanding science students and science educators are honored.  The dinner this year will be held on May 23, 2018 at Villa Lombardi’s in Holbrook.  Each high school science department from districts that are patrons of our District Membership Services Program submit an outstanding graduating senior from their school who is recognized at the Awards Dinner.  At the dinner three teachers (elementary, middle level, and high school) receive our Science Teacher Recognition Awards for meritorious service as a science educators.                                                                                                      

A letter has been sent to all building principals and to high school science supervisors inviting them to nominate a member of their faculty for recognition as a Science Teacher of the Year.  We invite you to assist us with our Science Teacher Recognition Awards Program by submitting a nomination form for an outstanding science educator.   You may nominate a colleague or yourself to be a candidate for recognition as a Science Teacher of the Year:  2017 – 2018.  The award recipient may be either a teacher of science or a science specialist who has made extraordinary contributions to the science teaching profession.  Examples of such contributions are:

  1. An outstanding teacher- One who helps students and other teachers both inside and outside the classroom with the delivery of science programs, organizes special student programs and has achieved success with special groups.
  2. An innovative teacher – One who successfully introduces new programs, develops or revises curricula, teaching methods or materials. 
  3. A teacher serving other teachers – One who works through professional organizations such as  STANYS, NSTA, NESTA, NABT, AAPT, AACT, BOCES, SCOPE, intra-school or inter-school programs, to provide ongoing help for student teachers, new teachers and veteran teachers.                                                                          

To nominate a teacher for an award, click here to complete the Google form. Once the information on the nominee has been entered in the form a cover letter and an application will be sent to the candidate.  This will include providing more detailed information about the candidate, and instructions for including a professional resume, a personal response, and letters of recommendation.  It will be the candidates responsibility to complete all forms and obtain all of required documentation. 

At the Awards dinner in May Outstanding High School Science Seniors are recognized from each participating high school in our District Membership Services Program. Student honorees and a teacher of their choice are guests of the Suffolk STANYS section.  The invited teacher speaks about the student as the receive a plaque.                        

Letters have also been sent to all to all Suffolk County high school principals and science supervisors requesting student nominations, which should be submitted by completing this Google form.  Please see if your district is a patron of the District Membership Services Program and can submit a student nomination.  If not, it’s not to late for a district to enroll.  The cost is $200 per high school.  If you need information about enrolling your high school in the District Member Services Program please contact Brian Vorwald. If this isn’t possible for this year, please consider supporting the program next year.  

Building Next Generation Units – Harder Than We Thought

Aegolius funereus — Amherst Island (Ontario, Canada) — 2005 Author: Mdf

Last year, when our district decided to roll out one Next Generation “mini” unit per grade level for K-5, we decided to design the mini units ourselves. We figured, how hard could it be? We were already teaching a lot of the content, we could “next gen” what we were basically already doing by adding models, introducing phenomena, and adding some strong questioning techniques.  In some ways, it’s been easier than we thought, but in many ways, a lot harder.

One of the toughest things was adjusting to the idea that we’d no longer be dedicating whole units to the study of particular animals.   For example, when we built our grade 4 unit on internal and external structures, we figured we could keep one of our favorite grade 4 activities, dissecting owl pellets, as part of the new unit.  After all, the parts of the owl’s external structure (eyes, feathers, talons, etc) and internal structure (digestive system) that we would be studying all support the animal’s survival, growth, and behavior.  We’d continue to use zSpace virtual technology to investigate the owl’s internal structure, with literature and non-fiction resources to explore the external structure.  The phenomenon was the owl pellet – how cool!  Easy.  We’d done it before.

As it turned out, using an animal we’d already taught made things both easy and hard.  We’d done it before, but in many ways making significant changes to something we’d already done with different goals, was harder than starting from scratch.   We used to refer to this section of our curriculum as the “owl pellet” unit.  Our old assessments contained specific questions about owls and owl pellets.  Keeping these great activities and resources made it difficult for us to let go of the idea of an “owl pellet unit” and embrace the idea of an “Internal Structures and Functions”  unit where the owl pellet would simply be the phenomenon that allowed the students access to the core concepts of structure and function.  No longer could we expect our students to simply become experts on owls – we needed them to become thinkers and investigators who would be able to generalize from their study of owls to structure and function of all animals.  That’s a big leap, and in our first year, we didn’t completely make it.

Later in the unit, while introducing structure and function of plants, we encountered a very different challenge.  We’d decided to introduce a plant we never had our 4th graders examine before – moss.  It seemed like a good choice – there was lots of it available outside, and we could peel it right up and bring it into the classrooms when we were ready. And, we’d be investigating something new. There was only one glitch – it snowed right before this section of the unit, and the snow lasted!  This little miscalculation set us back a week!

Ultimately, did we succeed with our first try at a next-generation science unit?  In some ways yes – for example, the students got comfortable with the idea of drawing models, and the thinking expressed in the student models definitely got deeper as the unit progressed.   The students loved the unit.  How awesome is it to have students so excited and interested in their work each day?  As elementary teachers, that is the best part of our job.   But – do our students now have a better understanding of generalized structure and function in animals and plants?  I’m not sure.  In the end, they knew a lot about owls and moss, which was not the goal.   But, we’re learning!  We may have had mixed results this time, but we’re still evaluating and thinking about changes for next year.

FRC FTW

The first of the year always tends to give my kids anxiety and feeling of abandonment. The next six weeks they will lose their parent. My precious Dorothy (5) and adorable Jame (3) will only see me on FaceTime for bedtime and a quick 5 minutes in the morning when they wake up as I am going out the door. This is due to the oath I took as well as thousands of others globally to be a FIRST robotics mentor. January 6th the Saturday that begins the 6 weeks of build season. For those of you that are unaware, this day Globally at about 10 am EST we learn our fate and the game of the year. In this cas, I am lucky that I live in the same time zone as where the game is released. Broadcasted out from the main kickoff event in New Hampshire Dean Kamen and Woodie Flowers send their message and homework to the world. Then the problem solving, game strategies, and money for supplies starts flowing. Here is the link to this years game.

There has been plenty of preparation gone into the year before the kick-off. Teams have been training new members and fundraising. Plenty of fundraising is required to build these elaborate robots. Our team tries to include local businesses and to help sponsor and mentor our team. What is great about this, is that our students go out and have to talk and convince the sponsors how great this program and why they need to support us. Also, students show up not knowing the difference between a wrench and a hammer. So the leadership of the program is charged with training the new members on the equipment and start building the family. Robotics becomes more than a program to the kids. It becomes family. Our team motto has become “relationships forged with aluminum but built for life” This has become more evident to me as I just went to a wedding of one of our alumni. As I saw her cake with FIRST symbols and binary code, and sitting at the robotics table, I knew I was apart of something bigger than I. Each one of the alumni had a masters in engineering, programming, and heading into Medical School.

Now for this years game. This year we need to stack milk crates “power cubes” onto a balance beam that is either about 2 feet or 5 feet off the ground. As long as the balance is tilted to our team we are building points. Then at the end of the game we can opt to climb a 7 foot high bar for 30 points. The moment we find out our task the students start to problem solve and design. They prototype and do research. They have found out that a previous robot that we built while these students were in elementary school. Was able to stack crates with ease. So they savagely recycled her. So now have a robot in the works. Making better what we used in the past. Also the climbing task was very similar to another robot we built when these students were in Pre-k. They are currently adapting the plans to meet this years needs. Students are actively working each day doing things that they can not do anywhere else.

The way the build works is that student leadership is charged with different teams and the leadership is not supposed to touch tools but to assist the younger members staying on task and the leadership reports to mentors. This is what every team should be doing. Using the adults as a reference but the robots should be built completely by students. Student ideas should be examined experimented and tested. Although some of the robots do not look student built at all. I get some joy in seeing the finished product and the pride of my team each year.

The FIRST program is a program that get the students heads out of their phones and gaming systems and takes textbook knowledge and puts it to real use. Get the students to make something real and tangible. Gives them the ability to fail, fall down, and pick themselves up to succeed. Any student that does not have an idea fail doesn’t learn anything. It is not uncommon to see a student break down when something they worked hard for fail, but you see them get the determination to adapt and change their idea. These are the success stories. They own their creation. Often their creation becomes their child. When the students develop this adaptation and creativity you see it in the pits of the competition. That is a sight to see. The team converge on their bot during competition and fix things that broke or tweek their design to make their bot better mid competition. My job is to support them and the students make it happen. They are learning to depend on themselves and their team. They are learning that life is not about memorizing what someone told them, they are learning life does not have an instruction manual. They are learning that they need to critically think and whatever they put their mind to they can accomplish.

The team is not just about building robots. Team 2161 is also about helping others. In the past 12 years or so They have raised over $200,000 for St. Baldricks to help fund research on childhood cancers. They put the whole event together and team alumni come back to shave the way to a cure.  Please consider donating or coming.

As my children Dori and James lose a parent for six weeks. In the end when they come to competition they see their extended family the robotics team. As my kids come up to the school to support my events , the students get to know them and the students will have them control a robot and show them what their parent has been up to. James also has been shaving his head since he was one year old. My students expect my kids to be at competition too. So each year the family grows. The stress and anxiety continues but in the end a better society can be formed with the critically thinking students that realize that they hold the key to greatness. I leave you with these two quotes from Nicola Tesla “Today’s scientists have substituted mathematics for experiments, and they wander off through equation after equation, and eventually build a structure which has no relation to reality.” “I do not think there is any thrill that can go through the human heart like that felt by the inventor as he sees some creation of the brain unfolding to success… such emotions make a man forget food, sleep, friends, love, everything.”

Questioning the Traditional Lesson Structure

With the adoption of New York State Science Learning Standards (NYSSLS), there has been a variety of approaches taken to start blending its three dimensional structure, composed of core ideas, cross cutting concepts and science and engineering practices, into teachers current practice. The disciplinary core ideas are essentially the content that teachers will teach or what information their students are required to know. The cross cutting concepts are the key themes that emerge time and again across science curricula, such as patterns and cause and effect, and are used to explain how students think about science. The science and engineering practices are how teachers will teach the information and what students will actually do in the classroom. The science and engineering practices listed in the NGSS framework include: asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, using mathematics and computational thinking, constructing explanations and designing solutions, engaging in argument from evidence and lastly obtaining, evaluating and communicating information.

If you are feeling overwhelmed with the new standards, one place to start your shift could be to merge one the science and engineering practices into your current teaching flow. A smooth transition could be found by incorporating the first science and engineering practice: asking questions. The most common professional development technique I’ve encountered regarding this practice is Question Formulation Technique, QFT. QFT was developed by the Right Questions Institute, tested and modified to intentionally teach students how to ask questions and provide teachers with the skills necessary to teach the students how to do so. Essentially, QFT is a series of steps that allows for students to ask numerous questions, improve them and prioritize them in order of importance.

QFT begins with a question focus chosen by the teacher, typically something students will look at and be curious about, stimulating them to ask questions. The question focus can be a short video, a visual model that students can look at or even a short statement. The question focus itself is not a question and has a focused intention of jumpstarting student questions in a direction that provokes student thought in a different vein that the traditional approach likely would not. For instance, if teachers were using a short video to introduce nuclear chemistry by showing a slow-motion clip of an atomic bomb detonating instead of a clip discussing the historical impact of the atomic bomb, then the conversation would be better able to focus on solely on the chemistry of the explosion rather than its historical, political or emotional implications. Further, while typical lessons might begin with a “Do Now” from a teacher, the question focus is a different approach that will allow students to develop their own questions to guide the following lessons.

The second step of QFT, is a protocol that must be followed where students produce as many questions as they can without stopping for a discussion, judgement or even answer to their questions. Questions are recorded exactly as they are stated and any statements listed are changed into questions. So often, teachers want to re-phrase student questions: “So what you’re really asking is…” while here the intention is the students’ questions will be validated, no matter how they are articulated. All student input is valued in this method and is a student-centered as opposed to teacher centered approach. Additionally, the teacher needs to stress the importance of following the rules. For instance, groups cannot stop to debate or discuss a question, the rationale for this being that they will lose focus and not be able to continue to generate questions.

The next phase of QFT calls for students to classify their questions as closed versus open by labeling them as “C” for closed ended and “O” for open ended. Closed ended questions are those that can be answered with a “yes” or “no” response such as: “is the balloon inflated?” as opposed to an open-ended question which could be: “what caused the balloon to inflate?”. Students are then asked to change a closed ended question to open ended and vice versa if desired in order to show how manipulation of a question allows for different information to be obtained in order to arrive at an answer. Finally, students prioritize questions in order of importance. Typically, teachers ask for students’ top three questions which, depending on the question set, will shape future assignments. As an example: if the class was going to proceed in developing an experiment from the question focus, this could be how students prioritize information, such as asking students to pick which questions would be appropriate to investigate or three questions to which they would most like to know the answer. This exercise is one where students need to analyze, compare and determine which of the questions posed would best yield the information they want to obtain.  This can be concluded by students reporting out priority questions along with a rationale for why they chose those questions. Finally, the technique ends with a reflection where students analyze their thinking in the QFT process and what they learned individually.

        Professional development is important for teachers to grow and develop new pedagogical techniques. I was first introduced to this technique last spring at a workshop where the presenter showed a YouTube clip of a tidal wave. Working in groups my colleagues and I were asked to come up with as many questions as possible about the video we observed (without judgement of the questions). The instructions were to begin each question with the statement “I wonder…” or “I notice…” as the video played on the smartboard over and over.   This was followed by us indicating if the questions were open (providing multiple answers) or closed ended questions (yes/no type responses) for each one and finally which one we could conduct an investigation about and to determine what the variables would be for that particular investigation. Similarly, at a recent department meeting, my director showed four clips on a loop and we had to choose one of the images to generate questions about. The images for this sort of activity can be obtained from YouTube clips or https://www.ngssphenomena.com/. Together, the group developed questions over a three- minute period, which felt long and grew increasingly difficult. The questions were categorized as open or closed and the closed ended questions were re-phrased to become open ended questions. The group questions were written on chart paper and prioritized into the top three the group would like to investigate.

This past month, I used QFT with my students on a unit discussing gas laws. The question focus was a demonstration in which a balloon animal was placed in liquid nitrogen. Students observed the balloon shrink and then the balloon was taken out and returned to its original configuration, a variation of which is shown here. The students then were led through the QFT technique. Some of the questions derived included: “what is the relationship between temperature and pressure?”, “what affects volume more temperature or pressure?”, “what causes balloons to expand and contract?”,” how would the shape change if it were a different gas?”, “what would happen if there were more molecules in the balloon from the beginning of the experiment?”. All of these were ideas which I typically would have used to drive discussion or generate lessons from. Here, the students generated the questions and took ownership of the lesson flow as I illustrated the ways in which the students’ questions were related to the aim of that particular lesson. The same content was taught, but the order they were presented in was slightly different to address the students’ questions as the lesson aim.

        In summary, QFT is a protocol where students generate their own questions, improve upon them and prioritize them. My own personal reflection is that whenever I have tried this technique, the participants are all involved in the process and engaged for the entire duration of time. For my quieter students, I am continually impressed by their confidence in asking questions. I found throughout my unit of instruction, there was greater interest and comprehension of the topics. Moreover, in my after-school department meeting, my colleagues all participated and were curious about each other’s questions. Even after the meeting, we were talking about the clips, which is definitely not the case for all department meetings. Finally, the protocol is well tested in a variety of educational settings and across diverse student groups. It’s a technique that I would recommend to new teachers as it may help with classroom management by providing students with rules and steps to follow at each point of the process.  

For more information about QFT, visit the Right Institute for resources. Additionally, there is a great resource written by Dan Rothstein and Luz Santana called Make Just One Change that thoroughly describes the technique and provides much insight into how to incorporate into professional practice.

Resources:

Rothstein, D. & Luz, S. (2011). Make Just One Change. Cambridge, MA: Harvard Education

Press.

https://www.nextgenscience.org/three-dimensions

http://rightquestion.org/education/

 

The Faulkes Project & the Montauk School Science Program

 

This slideshow requires JavaScript.

The Faulkes project is a real-time, astronomy based research and imaging project based at Cardiff University in England, and Santa Barbara, California. The later operates as LCOGT (Las Cumbres Observatory Global Telescope Network), and is an equal partner in the project.  Through this project, students can use large research grade telescopes located in Hawaii and Australia, via the internet, to image objects and conduct student research.  In addition, LCGOT has created a network of smaller 1-meter telescopes around the world.

     I became involved in the Faulkes project during the summer of 2010, after trying to build an observatory in Montauk for 7 years.  It was my initial goal for the local observatory, to operate from a network, providing High Schools internet access to the telescope. When I found out about the already established Faulkes project, I passed the torch and began earnestly using the Faulkes telescopes on the LCGOT network.  The telescopes in Hawaii and Siding Springs, Australia, are two-meter diameter telescopes which cost 30 million dollars each.  These are capable instruments, to say the least.

        Since joining the program, Montauk science students have imaged a planetary nebula (M97), and a pair of galaxies that are colliding (NGC 4567) and many other deep space objects.  Montauk students have worked on rebuilding a galaxy catalog called the Hickson Compact Galaxy catalog.  In addition, several students began research on determining which stars in a globular cluster are classified as Be Stars.  

  As an example of a student’s actual research (sponsored by researchers at Cardiff University), the student numbered image below is named NGC 330.  The student used photometry to determine any variation in the amount of energy being emitted by stars in this field and compared multiple images taken over several months.  The student then examined the images in specific frequencies of light and used various mathematical functions to determine which stars are classified as B[e] stars.            

For general classes, teaching students about astrophotography using robotic instruments and photo-processing can be challenging enough, and very rewarding.  The following images were taken and processed by Montauk students.  Most science students get very excited about participating in this project, and this can be a terrific STEM project as well.

For further information about how to get involved, or if you have any questions, please contact me and see the following web sites: http://lcogt.net  &  http://www.faulkes-telescope.com . My e-mail is jmalave@montaukschool.org .  

Happy observing and I hope to see your school’s images soon!!

 

We Win Success by Failing.

I’m bored with talking about success. By any metric, I’ve had the good fortune to enjoy a lot of success in my career as an educator. But I also fail a lot. And I know that I’m not alone. Failure is a significant part of educating kids. I don’t mean kids failing (hopefully that’s pretty diminished), I mean teachers failing to do the things they try to do. Things not working as planned. Mistakes being made. This kind of failure is more than just a thing that happens sometimes, it’s a significant part of the job. And it’s totally normal and expected.

So why do we hide it?

If you look at any public collection of educators, you’ll quickly see that discussion of success is much more common than conversations about failure. Any look at the #eduTwitter-scape or any of the Facebook groups for teachers is basically a wall-to-wall display of success. Kids doing amazing work. Teachers trying new things, and being delighted with the results. Everything working out exactly as planned (or even better than that). Which is lovely, but as far as I’m concerned, it’s not particularly reflective of the reality of teaching. Teaching is hard creative work, and like all hard creative work, people fail a lot.

The issue is even more glaring in science education, where teachers teach a field of endeavor that proceeds by failing. The central role of falsification in the scientific process is so essential that only presenting success not only warps perceptions of reality; it can distort our very understanding of it. And yet, we still pretend like things succeed in our classes more than they fail.

It’s easy to understand why this is the case. Generally speaking, people want to be perceived at their best, and for most people, their “best” is not when things they are trying to do aren’t working. It takes a degree of confidence to be willing to show one’s posterior on a regular basis. But in my experience, giving failure a public perch leads to a level of improvement in practice and product that is just not possible if all you talk about is success. Learning is nothing if not all about correction.

Assuming you agree with the above, the question becomes how to build a place for failure in your public life. I won’t pretend to have all of the answers, but I do have a few ideas that have worked well for me:

  1. Keep everything in Beta. Beta testing refers to the practice in technology development wherein a working, imperfect, version of a product is turned over to a large group of people to use. This everyday usage then provides the developers with a list of imperfections that would otherwise remain undiscovered if the developers were the only ones doing the product-testing. This philosophy is easily applied to education. The work that teachers do and the materials they create should live in a state of constant beta testing. By taking the default stance that work is imperfect, there is less discomfort when the imperfections in that work are discovered. Of course, this type of thinking is only helped by a willingness to make your work available to a vast professional learning network under pretty open terms of usage. Fortunately, in the modern era of easy-to-build webspace and free to distribute licensing, it’s trivial to set up a system wherein you can be a perennial beta tester. All it requires is a willingness to do it.

  2. Keep a Resume of Failures. I first discovered the concept of the resume of failures when I read this article. The example resumes that it included lead me to put up my own. I think more people should do this, and I hope that doing so on my end leads some of the tens of thousands of people who interact with myself and my digital footprint every year to realize that failing is a large part of why I’ve had the career that I’ve had. Who I am as an educator, and what I do is arguably much more a result of the failures that I’ve had in my career than it is of my successes1.

  3. Reflect on failures (and successes). I am a huge fan of reflective practice. My reflection tends to happen in public spaces. I find a lot of value in thinking aloud if for no other reason than that it invites correctives from a maximal number of wise minds. But even if a public airing of your reflective practice isn’t something that appeals to you, the act of reflecting itself is invaluable for learning from your experiences. There are a variety of tools that you can use to help you reflect, ranging from a notebook, a simple .txt file, or something a little more formal like 750Words or a blog. However you do it, the trick is to make sure that you actually stick to a routine of regularly engaging in reflection on the work that you are doing with the understanding that the purpose of that reflection is not to whinge about imperfection, but instead to think about how to improve.

These are three relatively easy ways to build a space for considering failure into your professional life. As always, it might be too much to try to do all three of the above at the same time. But the point isn’t to do everything that’s suggested (or even anything that’s suggested). Instead, it’s to work to make a space in your working life for acknowledging that however good we are as educators, however fortunate we have been in our work, we still fail a lot.

The Times They Are A-changing…

“Come gather around people
Wherever you roam
And admit that the waters
Around you have grown
And accept it that soon
You’ll be drenched to the bone
And if your breath to you is worth saving
Then you better start swimming or you’ll sink like a stone
For the times they are a-changing”

– Bob Dylan

While the lyrics above may sound a bit ominous, they are also something to consider! It is an exciting time in New York State for science education…but it can also be an overwhelming time! When I started teaching high school science in 1985, communication was much more limited than now. The internet was not readily available, cell phones and text messaging had not yet been developed. For new teachers, developing lessons could be an overwhelming and isolating task. I was fortunate to start my career with a colleague that was more than willing to collaborate and was able to work with her to plan new lessons and work out the “kinks” as I began my teaching career.

As we begin the transition to NYSSLS and three-dimensional teaching and learning, the shifts in our classroom can be difficult to navigate alone. While some districts are actively working to begin the shifts, others are moving forward more slowly. If you are fortunate enough to work closely with a collegial department, you may have the support needed to begin to convert your lessons. For those of us that are the only discipline-specific teacher or work in a less than perfect department, there is a need to find resources and effective means of networking. The internet is a wealth of resources and information, but there is nothing like collaboration with another teacher to ease the burden of lesson-planning and gain professional expertise!

NOW is the perfect time to consider joining STANYS and encouraging your colleagues to join as well! STANYS has been at the forefront of providing professional development opportunities directly related to incorporating the new standards into classroom practice. The annual conference in November is only one of many opportunities. The Suffolk section has also provided local conferences for the past several years and is actively seeking ideas for providing the best possible support and professional development for its members. Membership has its benefits including:

the opportunity to network with science teachers across the state
reduced cost of attendance at conferences a chance to have your voice heard in science education concerns in NYS publications that will increase your awareness of issues concerning science educators reduced joint cost of membership in NSTA

We are looking for your input and feedback! Involvement at the local level of STANYS is an ideal way to learn more about NYSSLS and to increase your professional network of enthusiastic teachers. In this time of change, STANYS can be the support that you are looking for. If you are already a member, try to commit to attending a meeting or a conference to learn more about what we do. Approach your district for funds to attend the state conference. Encourage your colleagues, especially elementary teachers, to consider joining! If you are not a member, follow the link below to join! (Membership in the state level includes membership in the section level.)

Join STANYS Today!

Elementary Science Transition to NYSSLS

Having spent a career teaching high school science, I am now engaged with the world of elementary science. The adoption of the New York Science P-12 Science Learning Standards (NYSSLS) in December 2016 has apparently rejuvenated interest in elementary science. Recently retired (meaning time on my hands?) and involved with the transition to our new science standards based on A Framework for K-12 Science Education and NGSS, I was drawn into professional development opportunities. I’ve learned a lot about how students should learn science, reasons to shift to significant core ideas, how to incorporate engineering, provide meaningful hands-on experiences, and engage with phenomena. These standards should address the needs of all students, incorporate real-world scenarios and when possible be community-based. What really excites me the most about the NYSSLS is the impact this will have on our youngest learners.

The hours spent with our elementary colleagues has given me some insight into their challenges teaching science. Besides the many times that their students are involved in activities outside their classroom, most admit their world is driven by and focused on ELA and math. Teacher evaluation, APPR, and district initiatives typically don’t elevate science learning to the level it deserves. Many are lucky if they get a couple of hours a week of science. Unfortunately, some only do “science” by using the literacy-based science in the ELA domains and modules from www.engageny.org. I’ve seen a wide variety of programs with science “push-ins”, STEM specialists, family STEM nights, STEAM classrooms and varieties of publisher and BOCES kits. Even with that support, most admit science can be short-changed. Since the past standards outlined in Elementary Science Core Curriculum Grades K-4 isn’t grade banded, each district has been left to develop their own scope and sequence so there may be a lack of coherence or much repetition based on “favorite topics.” Students that transfer between districts and sometimes other schools within a district can miss important foundations of science literacy. Sometimes, it’s the grade 4 teachers have the primary responsibility of preparing the students for the Elementary-Level Science Test given in grade 4.

Our New York State P-12 Science Learning Standards is very different for our young learners. Grade banded P-5 with specific Performance Expectations gives teachers and curriculum designers guidance as to what students are expected to know and do at the end of instruction. Coherence is presented by the progressions in grade blocks of K-2, 3-5, MS and HS for the three dimensions (Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts). This means that students learning science using curriculums developed from the NYSSLS will experience increasing expectations in how they learn (Practices), what they learn (Core Ideas), and what they look for in the questions they ask (Crosscutting Concepts). Students are expected to construct their understandings by doing science. Much greater depth in learning occurs when the focus shifts from knowing about science to them figuring out about science.

Many elementary teachers admit to me that their students say science is their favorite subject but the teachers are looking for support. The teachers I’ve worked with are among the most pedagogically talented teachers. I have seen them run with a token of an idea and turn it into fun activities, make ELA connections, and be totally appropriate to their school community. The challenge for STANYS and the science specialists across New York is how to support the transition of elementary teachers into NYSSLS. I’ve worked as a life science consultant with teams of elementary teachers and other science specialists writing grade 1 and 2 for Science21 and I can admit it is very challenging. Many elementary teachers feel they lack the background and confidence to dive into developing curriculum for science. They also wonder what these standards will look like on the student assessment which can help when developing curriculum. Our elementary programs need a good curriculum that maintains fidelity with the intent of the new standards. The elementary teachers and administrators need the training to recognize materials that are aligned and provide constructivist learning opportunities. They should be aware of the limits of the science content in the NYSSLS so they’re not compelled to teach well beyond and be sure to address science literacy for all the students.

This is an exciting opportunity for our elementary colleagues to teach science and for students to experience science as a platform for interdisciplinary learning. It has been shown that students that learn science this way not only show significant gains in science but students of high needs subgroups exhibit high gains, and positive gains are also demonstrated in subjects other than science.* Districts need a plan, decide on resources, and provide the support for the transition to an NYSSLS based elementary science program. It’s time we take advantage of our young student’s natural inquisitiveness and sense of wonder as an opportunity to teach and for students to learn science.

*Smithsonian Science Education Center. (2015). The LASER Model: A Systemic and Sustainable Approach for Achieving High Standards in Science Education. Executive Summary. Washington, DC: Smithsonian Institution.

Geological Society of America Annual Meeting in Seattle: Tales and Take-Aways from the West Coast

The Geological Society of America held their annual meeting in Seattle, WA, in late October. This year, I had the privilege of attending and presenting with a fellow New York State Master Teacher about training pre-service and in-service teachers to write and implement inquiry labs in an outdoor setting, in an Earth Science classroom. We had an amazing trip, saw and did a lot in our short time on the West Coast, and I have several take-aways to share.

Items I want to share, in no particular order:

  • Take advantage of excursions offered by conference planners. We thoroughly enjoyed the Foodie Tour of the Public Market (more commonly referred to as Pike Place Market). We enjoyed a variety of cuisines from creamy Greek yogurt to dungeness crab cakes, and the best New England clam chowder (yes, even though it’s on the West Coast, it is the national award winning recipe)! Our tour guide Heather was informative, dramatic at times, and gave a nice behind-the-scenes tour of this world famous location! Oh, and the “original” Starbucks is not actually the original…
  • The Sun shines in Seattle! A LOT!
  • The Seattle Monorail goes from downtown to the Space Needle in 90 seconds!
  • From the top of the Space Needle we saw the Olympic Mountains, the Cascades, Mt. Baker, Mt. Rainier and Mt. St. Helens. It was a perfect day.
  • If I ever head back to the area, I would like to go and visit the Olympic Bike and Skate Shop, in Port Orchard, WA. You see, we met Fred Karakas, the shop’s owner atop the Space Needle. Fred is the MAN! He is a Vietnam veteran, leading a reunion of fellow vets to the Space Needle. With a background in biochemistry, Fred spent the better part of an hour teaching us how to get muscle cells to operate at their maximum level by completing his method of High Intensity Interval Training. We met Fred’s daughter, fighter pilot buddies, got a history of the entire area, saw him at lunch at The Collections Cafe, and ran into him again in the Chihuly Glass Gardens.
  • The ladies from Eastern Oregon deserve an award more so than their own bulleted section. These ladies are public school teachers who presented directly next to us. Their topic? The implementation of NGSS in Oregon public schools over the last four years. They have great ideas, and more importantly… they have experience in writing and implementing year’s worth of NGSS lessons! We are invited to Zoom with their planning group, and I cannot wait to learn from their expertise. Work smarter, not harder, people!
  • Great resources for implementing NGSS-aligned lessons include GETSI – GEodesy Tools for Societal Issues at: https://serc.carleton.edu/getsi/index.html and also InTeGrate – Interdisciplinary Teaching about Earth for a Sustainable Future at: https://serc.carleton.edu/integrate/index.html 
  • I am particularly interested in this from GETSI – Ice Mass and Sea Level Changes: https://serc.carleton.edu/getsi/teaching_materials/ice_sealevel/index.html 
  • It would be nice if there was a clearinghouse of sorts for people to share and save NGSS aligned lessons, for the rest of us to see, adapt, and share on a national level.
  • I need to join NAGT.
  • Dr. Lee is a professor at the University of Waterloo in Ontario. He is interested in working to promote better hydrogeology labs, and will share his expertise and an absolutely great artesian aquifer lab with us in the very near future!
  • There is a severe underrepresentation in geoscience education in the United States. We need to promote and develop geoscientists from all fields in the very near future. If not, the future of our nation may very well be in peril!

Here’s my view, looking south, from the Space Needle! Spectacular!

0C64E6C3-BA15-4587-94A2-7A61BE56ED29.JPG
Here’s my view, looking south, from the Space Needle! Spectacular!

IEP’s – Read them for an effective school year

Many general education teachers and new science teachers are being asked to teach special education students without support.  This is why I am here, to help, give tips tricks and support those who are given the difficult (but not impossible) task of teaching this diverse population of students the subject we all love.

As a science teacher, it is difficult to be on familiar terms with and understand which parts of the IEP are most important.  An IEP can be a very overwhelming document to read and dissect.  An IEP is the Individualized Education Plan that each special education student has.  No two documents are the same as no two students are the same.  The IEP became uniform in New York State 4 years ago.  This has made it much easier for students to go from school to school and the document is readily available.  Each part of the IEP is important, nevertheless some I have found to be more important in the teaching of science.

The first part of the IEP to give special attention to is the Academic Achievement, Functional Performance and Learning Characteristics often known as the (PLEPS).  This part of the IEP informs the teacher of the student’s academic strengths and weaknesses.  This part of the document will inform the teacher if the student has reading, vocabulary, mathematical or any other academic difficulties.  This is often where I find if the student can read independently or needs to be read to.

The next section to take a glance at is the Social Development section.  Due to the lab environment in many of our science classrooms it is important to discern how these students behave in social settings.  Many times, this section will let you know if the student is able or unable to work in cooperative learning groups. Below this section is the Physical Development section, which needs to be read to determine if the student requires any modifications in the lab setting.  Below Physical Development is the Management Needs section.  The section that important for the general education teacher are the Program Modifications that are located further in the IEP.

For the science teacher, the most important section to read and understand is the Supplementary Aids/Services and Program Modifications section of the IEP.  This section informs the educator what modifications the student needs on a daily, weekly or as needed basis.  Often this section explains if the student needs preferential seating, books on tape, copies of notes, refocusing and redirection, information broken into smaller parts, breaks, etc.  These modifications are imperative to the success of the student in the science classroom and the success of the student is dependent on receiving these modifications.   When on IEP direct, click the “Show details” and then the exact reason for the modification or how the modification needs to be given is shown.  This is a huge help in meeting the needs of students with disabilities because each one has their own set of needs and modifications.  What “special seating arrangements” means for one student may be different for another.  

Lastly, the section most general education teachers are familiar with is the Testing Accommodations section of the IEP.  This section explains what accommodations the student is entitled to for quizzes, tests and state assessments.  The IEP will explain how the accommodations should be given; for the example of “Extended time”, in the column “implementation recommendations” it will say 1.5X or 2.0X or Double time.  As the school year gets underway and you learn about your students if you feel that they are in need of another accommodation, do not hesitate to discuss it with the special education teacher, guidance counselor or school psychologist.  The input of the general education teacher is necessary for the success of the child and the coherent writing of an IEP.

All parts of the IEP are important to the success of each student and should be read and followed through.  For the science teacher and meeting the needs of the diverse population these I have highlighted are in my opinion the most important to help make the job a little easier and assist the students who already struggle.   If there is a part of the IEP that you do not understand, ask questions and inquire about the student.  As a special education science teacher it is always refreshing to have the general education teachers ask questions about their students, it shows you care and want to help them in any way that is possible.  Good Luck with the new school year! If you have any questions please don’t hesitate to contact me.

News and Notes for the STANYS Suffolk Section