Live the Science, Don’t Just Teach the Science

Over the years I have realized that there is more to teaching science than just sitting in a classroom.  We should live it.  The environment of Long Island has so much to offer.  There is something for each one of our disciplines, and all we have to do is look to our waters.  As a Professional Association of Diving Instructor (PADI) Dive instructor, I have been teaching students about the wonders of diving.   Being an AP Physics 2, Physics, Chemistry, and Living Environment teacher brings so much more to this activity.

My uncle Billy was an avid scuba diver.  I remember him telling me stories of all his diving adventures from around Long Island.   Because of him, I joined the diving club, Aquanuts, at the Hampton Dive Shop.  There I learned about so many other possible diving adventures to go on locally.  Often people think that scuba diving off of Long Island isn’t very good because visibility isn’t very good, but I learned that when you know where and when to dive there is so much to see and do.

As a first year AP Physics 2 teacher a lot of things dawned on me.   The unit I teach on fluids in AP physics 2 includes everything I teach in my “open water diver” and specialties of diving classes.  Once this realization hit me, I started applying many of the concepts of diving to AP physics 2.   Many of the demonstrations and discovery activities I use in the classroom where inspired by diving.  For example, my students calculate the amount of air required to generate buoyant force to lift things off the floor, they calculate the volume of a sealed bottle at different depths, and the students develop ideas about air consumption at depths.  Because of this, all summer I have been trying to develop labs where students can go on a field trip to the Dive Shop to test and discover these principles.   I want the students to learn from real life action in the pool.   I want the students to model the phenomena and discover and explain what is happening.

Educators should explore their curiosity and try something new.   Find a dive shop and experience what you teach.   The more you experience the better you will become as an educator.   For example last year I dove the Oregon wreck.  On March 14, 1886, the Oregon collided with another ship and sank to the bottom of around 100-foot depth just off the coast of Fire Island.   She was the fastest ship of her day using sails and steam engine.   Before the dive, I was told that all that was left was a three story high steam engine and boilers.   I did not think there would be much to see.   During my plunge into the Atlantic, the steam engine came into sight in all of her majesty.   Then I spent the next 3o minutes or so lost in all of the biology and wonders hidden in all of the nooks and crannies.  I was getting lost in the science and thinking of the history and people who were on that ship that fateful day.

Image result for oregon wreck dive

Related image

Another dive was of the USS San Diego.  On July 19, 1918, the Sand Diego was sunk by German Submarine U- 156 just south of Fire Island and was the only major ship lost during WW1.   She sits upside down on a sandy bottom at about 100-foot depth.  The dive was awesome and visibility was about 40 feet.   This ship has been underwater for about a 100 years and my curiosity got the best of me once again.   The holes that Mother Nature put in her gave me great areas to look inside and see the life of that now calls her home.

Shipwreck USS San Diego

Wrecks are not the only things to see locally when diving.  The Ponqugue Bridge provides a beach dive that offers so much ecology and goes a max of 30-foot depth.  Right at Shinnecock inlet, you can spend 40 minutes underwater and your wonder and amazement will grow.  Just to see how all of the creatures interact and how they hide and even the human impact of the environment and the symbiotic relationship that exist between humans and sea life.  The two bridges offer a home to the sea life.   They are attracted there for the food source and protection they offer.   Including the utility cable that lies on the floor of the canal.   You will find more and more hiding places for sea life.   The more I dive the site the more I find.

Image result for ponquogue bridge

Some of the fun is investigating the areas that you are going to explore.  There is so much history just sitting there on the sea floor.   I try to learn about the history before I dive the location.   I do this to pre plan my activity for safety, but also to learn where a ship had been, what people were on that ship and how that ship came to meet the sea floor.   If I did not dive our local stores I would never know of the German Submarines, artificial reefs and other ships that went down for various reasons.   It is so interesting to learn about the history and to compare the original diagrams of the ship to what they look like now.

What I am trying to say is that it’s great to venture out of the classroom not just in field trips but rejuvenate our love of the subject.   Try something new each summer vacation to get out of your comfort zone to feel more alive.  The more you learn and experience and the more ways you will have to provide the information to the students.  For more information please email me and if you have any ideas for labs you would like to see developed.   Also if you would like to set up an experience or get your certification please let me know.

Bibliography
http://njscuba.net/

Tips on Teaching Astronomy

An image of the 8.21.17 eclipse, taken by the author of this post.

The smartphone operating system will dictate which apps you use. However, many of the apps are similar, so they can be used the same way. Having the students load a sky map of some sort, will allow most of the kids not to get bored if you do an observing session at night with limited telescopes. Better yet, include an app that detects the position of the International Space Station, and plan an observing night that coincides with a flyby of the ISS. Students and parents always marvel at the sight of it as it brightly passes overhead. Passing Iridium satellites can also be predicted and observed.

If I’m teaching astronomy, I always ask the students to load a program onto their laptops, it’s called Stellarium. Stellarium allows students to see their sky at night, for that date and time (or any date and time), and illustrate it many ways. It also shows other cultural constellations, not just western culture. Stellarium can be used for H.W. Assignments, teaching constellations, mythology, teaching star circles, and learning about deep space object classification systems. Another laptop program that’s free and is a great tool for showing our place in the universe is Where is M13? It is a program that maps out our galaxy, and most of the visible celestial objects in deep space that you might discuss. It is also useful for showing the structure of our galaxy.

Now telescopes, if you are considering purchasing equipment the first thing you should buy is a solar telescope. Meade is producing a low-cost solar telescope called the PST. If you are new to solar observing, you can easily see sunspots, prominences, and solar flares with these solar telescopes during the day! For night, skip the refractors, because good ones are a fortune, and cheap ones are good for the moon only. A planet will look like a small dot, and the planet will rotate away before a student has a chance to see. At night, diameter counts, and the cheapest way to get diameter is with reflecting or Newtonian style telescopes. A 10” or 12” reflecting telescope will not break the budget and is not too heavy to move. If you get an equivalent catadioptric, it’s a back breaker and very expensive. Used equipment can be found online, so if your district is willing to but that way, you can save money by shopping on Cloudy Nights.com. Trussed reflectors are a little cheaper than catadioptric but more expensive than Dobsonians (Newtonian version), however, they are easy to set up and are light. OK, you keep hearing me mention catadioptric. I’ll save this one for last, as they are expensive. I just saw new 9.25-inch listing for $3000.00. That is a starting point, they get more expensive. They are also heavy and delicate. The advantage is that most catadioptric are compact in length, are GoTO, and most have a GPS to do self-alignment. Having a big heavy mount is important for these instruments, otherwise they will vibrate and so will your object in the eyepiece will too.

Just a few more tricks, I use Google Earth and a solar system scaling Excel program (Google it) to create a scale model of the solar system if the sun has a 9” diameter. I usually will have the class on the athletic field to build the model. I like using solar system and constellation flash cards during lessons as a quick segue into lessons. Most of my students love Scale of the Universe, and I as a teacher love UNL Astronomy Simulations. Well, that’s it for now, enjoy the rest of the summer and don’t forget the August 21st solar eclipse!

Cool Tools: Loopy

Systems thinking is as important as it is hard.  As we look at the New York State Science Learning Standards, we see a clear role for systems thinking.  Systems and System Processes is one of the Cross-Cutting Concepts, and Developing and Using Models is a Science Practice.  It should be obvious to all of us that where we are going as a state is very much to system-land.

There are many ways that we can model system dynamics.  Many of us model systems in our classrooms whenever we engage in “simulations”, or other types of modeling activities.  And I’m sure most readers are well aware of the various interactive computational simulations that have been created for students to work with.  But there are not a whole lot of computational resources that allow students to construct relatively robust models of systems for their own investigation.  This is mostly because programming computers is relatively difficult. As such it’s not often tenable to train students in how to create a computational tool prior to having them use it.

Which is where Loopy comes in.  Loopy is a very simple systems dynamics modeling tool where anyone can create a system and then see how its dynamics affect the system.  No programming is required, and the tutorial should take anyone <5 minutes to be able to render a system of their own interest.

Here’s an example of Loopy at work in a simple food web model that I created for this article:

See?  Not that hard (also, I totally understand that it’s “not that good”).

Tools like Loopy can help give students opportunities to model systems, without the high cost of entry that usually accompanies computational model construction.

The Science Event of the Summer

It is difficult to get the Sun, Moon and Earth to align for a total solar eclipse. The last total solar eclipse to cross a large portion of the United States was in 1979. The last annular solar eclipse to cross New York was May 10, 1994, when I was in 8th grade. That was amazing to see and since then, I have waited patiently for 2017’s totality event.
After a year of planning our eclipse trip, our path is set. On August 21, 2017, we will be in Mount Juliet, Tennessee, northeast of Nashville, nearly on the centerline of totality! There is a lot to do in the area, and when I searched for hotel rooms in late April, there were still many available.
Originally, we intended to view the eclipse from Carbondale, Illinois. A shady hotel cancelled the reservations I made a year in advance, and left us scrambling for a new location. Luckily, it is not too late to find a room, or a campsite, and see one of nature’s rare and beautiful events.

Eclipse Resources:

General Eclipse Info and Maps: www.greatamericaneclipse.com 

NASA’s Eclipse Page: https://eclipse.gsfc.nasa.gov/eclipse.html 

Rice Space Institute’s Eclipse Page (sign up for the eclipse listserv!): http://space.rice.edu/eclipse/ 

Totality App (from Big Kid Science): Free!

Safe Viewing Practices:

NASA GSFC’s Eclipse Safety Page (with links ranging from eye protection to taking travel precautions): https://eclipse2017.nasa.gov/safety 

Purchase your Eclipse Eyewear ASAP, before they sell out! https://www.greatamericaneclipse.com/eclipse-viewing/ 

Eclipse Lesson Plans:

NSTA Eclipse Booklet: http://static.nsta.org/extras/solarscience/SolarScienceInsert.pdf

Big Kid Science Lesson Ideas: http://www.bigkidscience.com/eclipse/classroom-activities/

NASA/JPL Eclipse Yardstick Model: https://nightsky.jpl.nasa.gov/download-view.cfm?Doc_ID=327

Other NASA Activities: https://eclipse2017.nasa.gov/activities 

Eclipse Animations:

Eclipse as viewed from the Earth, accounting for the Earth’s topography and Lunar Rim features from the LRO: https://www.youtube.com/watch?v=MJgXaqW3md8 

2017 Eclipse Shadow Cones (my students thought this was so cool!): https://svs.gsfc.nasa.gov/4321 

Other NASA Animations (a treasure trove of resources from the Scientific Visualization Studio): https://svs.gsfc.nasa.gov/index.html 

What will you see from New York?

Depending on your latitude, you will see 70% (southern New York) or less of the Sun covered by the New Moon this coming August.

Finding a Place to Stay on Eclipse Day:

Camping (and Glamping) at the Oregon SolarFest: https://www.oregonsolarfest.com/ 

Casper, Wyoming Eclipse Festival: http://eclipsecasper.com/ 

Nebraska Sandhills: https://2017nebraskaeclipse.com/ 

St. Louis, Missouri Eclipse Day: http://www.missourieclipse2017.com/ 

Tennessee State Parks: http://tnstateparks.com/activities/solar-eclipse-at-the-park-2017 

Mount Juliet, TN (where we will be stationed): http://www.tennessean.com/story/news/local/wilson/mt-juliet/2017/02/27/mt-juliet-jumps-city-view-total-solar-eclipse/98274534/ 

This slideshow requires JavaScript.

What if you miss the eclipse this summer?

The next American total solar eclipse will be Monday, April 8, 2024. This will take a different path from the 2017 eclipse, with the Moon’s shadow crossing over far western and northern New York State! We will have to work on our local school boards to plan our spring break that week, so we are all able to travel for the event.

A Couple of New Websites

This is the moment of the year when I can begin to see the light at the end of the tunnel so they say. AP Exams are around the corner and I often forget the stress not only on the students but on myself as well. I am often thinking “Wow, I am not sure I will be ready for this in September again,” but then after recharging over the summer I find myself excited to start all over again.

I do try to use my time after the AP Exam to finish, start, continue with the things that have been placed on the back burner during the rest of the year. I have found two great resources I would like to pass on to the membership:

  1. An online library full of resources for biodiversity produced collectively by the California Academy of Sciences and Khan Academy. This is an online virtual expedition for high school (and adult) learners and covers more than 30 specific tutorials. It ranges from topics like why biodiversity is important, where it is found, specific case studies and how it can be protected. Each of the tutorials includes videos, articles, a glossary, quiz questions, activities, and references to dive deeper into content.
  2. A youtube channel that covers teacher tools. It is a mixed collection of teaching tools and websites that students can learn from. Each week the author, Jamie Keet presents a short (~10 minute) video on his picks of the week. I often play this in background while I am working on something else so that I can pause when something peaks my interest and pick up a new tool. Here’s a recent video from the channel: