Cool Tools: Loopy

Systems thinking is as important as it is hard.  As we look at the New York State Science Learning Standards, we see a clear role for systems thinking.  Systems and System Processes is one of the Cross-Cutting Concepts, and Developing and Using Models is a Science Practice.  It should be obvious to all of us that where we are going as a state is very much to system-land.

There are many ways that we can model system dynamics.  Many of us model systems in our classrooms whenever we engage in “simulations”, or other types of modeling activities.  And I’m sure most readers are well aware of the various interactive computational simulations that have been created for students to work with.  But there are not a whole lot of computational resources that allow students to construct relatively robust models of systems for their own investigation.  This is mostly because programming computers is relatively difficult. As such it’s not often tenable to train students in how to create a computational tool prior to having them use it.

Which is where Loopy comes in.  Loopy is a very simple systems dynamics modeling tool where anyone can create a system and then see how its dynamics affect the system.  No programming is required, and the tutorial should take anyone <5 minutes to be able to render a system of their own interest.

Here’s an example of Loopy at work in a simple food web model that I created for this article:

See?  Not that hard (also, I totally understand that it’s “not that good”).

Tools like Loopy can help give students opportunities to model systems, without the high cost of entry that usually accompanies computational model construction.

Bioengineering New Fertilizers

Researchers from Harvard have recently unveiled a new method in bioengineering a bacteria-based fertilizer that has shown tremendous increases in the biomass of selected crops.

Nocera Lab, Harvard University

The Nocera Lab gained recognition in the past in the development of the artificial leaf, which is capable of splitting water into hydrogen and oxygen through the use of different catalysts. The researchers have now used this technology to develop the bionic leaf: the artificial leaf used in concert with a particular microorganism capable of using the hydrogen gas evolved from the artificial leaf and carbon dioxide from the atmosphere to produce a stored biofuel in the bacteria. When this Xanthobacter bacteria is placed in the soil, it is capable of undergoing nitrogen fixation with the stored biofuel and nitrogen in the air to produce natural ammonia to fertilize the crops. As seen in the image above, the soil with the nitrogen-fixing bacteria (right) had a considerable increase in the biomass of the planted crop.

For more information about the study, check out the press release on the American Chemical Society’s website.

In thinking out the transition to the new standards, this could be an interesting example of an investigative phenomenon or just a great article to bring into the classroom on how scientists are currently trying to solve either the energy crisis or the food demand of our ever-increasing human population.