Elementary Science Transition to NYSSLS

Having spent a career teaching high school science, I am now engaged with the world of elementary science. The adoption of the New York Science P-12 Science Learning Standards (NYSSLS) in December 2016 has apparently rejuvenated interest in elementary science. Recently retired (meaning time on my hands?) and involved with the transition to our new science standards based on A Framework for K-12 Science Education and NGSS, I was drawn into professional development opportunities. I’ve learned a lot about how students should learn science, reasons to shift to significant core ideas, how to incorporate engineering, provide meaningful hands-on experiences, and engage with phenomena. These standards should address the needs of all students, incorporate real-world scenarios and when possible be community-based. What really excites me the most about the NYSSLS is the impact this will have on our youngest learners.

The hours spent with our elementary colleagues has given me some insight into their challenges teaching science. Besides the many times that their students are involved in activities outside their classroom, most admit their world is driven by and focused on ELA and math. Teacher evaluation, APPR, and district initiatives typically don’t elevate science learning to the level it deserves. Many are lucky if they get a couple of hours a week of science. Unfortunately, some only do “science” by using the literacy-based science in the ELA domains and modules from www.engageny.org. I’ve seen a wide variety of programs with science “push-ins”, STEM specialists, family STEM nights, STEAM classrooms and varieties of publisher and BOCES kits. Even with that support, most admit science can be short-changed. Since the past standards outlined in Elementary Science Core Curriculum Grades K-4 isn’t grade banded, each district has been left to develop their own scope and sequence so there may be a lack of coherence or much repetition based on “favorite topics.” Students that transfer between districts and sometimes other schools within a district can miss important foundations of science literacy. Sometimes, it’s the grade 4 teachers have the primary responsibility of preparing the students for the Elementary-Level Science Test given in grade 4.

Our New York State P-12 Science Learning Standards is very different for our young learners. Grade banded P-5 with specific Performance Expectations gives teachers and curriculum designers guidance as to what students are expected to know and do at the end of instruction. Coherence is presented by the progressions in grade blocks of K-2, 3-5, MS and HS for the three dimensions (Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts). This means that students learning science using curriculums developed from the NYSSLS will experience increasing expectations in how they learn (Practices), what they learn (Core Ideas), and what they look for in the questions they ask (Crosscutting Concepts). Students are expected to construct their understandings by doing science. Much greater depth in learning occurs when the focus shifts from knowing about science to them figuring out about science.

Many elementary teachers admit to me that their students say science is their favorite subject but the teachers are looking for support. The teachers I’ve worked with are among the most pedagogically talented teachers. I have seen them run with a token of an idea and turn it into fun activities, make ELA connections, and be totally appropriate to their school community. The challenge for STANYS and the science specialists across New York is how to support the transition of elementary teachers into NYSSLS. I’ve worked as a life science consultant with teams of elementary teachers and other science specialists writing grade 1 and 2 for Science21 and I can admit it is very challenging. Many elementary teachers feel they lack the background and confidence to dive into developing curriculum for science. They also wonder what these standards will look like on the student assessment which can help when developing curriculum. Our elementary programs need a good curriculum that maintains fidelity with the intent of the new standards. The elementary teachers and administrators need the training to recognize materials that are aligned and provide constructivist learning opportunities. They should be aware of the limits of the science content in the NYSSLS so they’re not compelled to teach well beyond and be sure to address science literacy for all the students.

This is an exciting opportunity for our elementary colleagues to teach science and for students to experience science as a platform for interdisciplinary learning. It has been shown that students that learn science this way not only show significant gains in science but students of high needs subgroups exhibit high gains, and positive gains are also demonstrated in subjects other than science.* Districts need a plan, decide on resources, and provide the support for the transition to an NYSSLS based elementary science program. It’s time we take advantage of our young student’s natural inquisitiveness and sense of wonder as an opportunity to teach and for students to learn science.

*Smithsonian Science Education Center. (2015). The LASER Model: A Systemic and Sustainable Approach for Achieving High Standards in Science Education. Executive Summary. Washington, DC: Smithsonian Institution.